Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal medullary cells.
نویسندگان
چکیده
The temporal resolution of carbon-fiber microelectrodes has been exploited to examine the plasticity of quantal secretory events at individual adrenal medullary cells. The size of individual quantal events, monitored by amperometric oxidation of released catecholamines, was found to be dependent on the extracellular ionic composition, the secretagogue, and the order of depolarization delivery. Release was observed with either exposure to 60 mM K+ in the presence of Ca2+ or exposure to 3 mM Ba2+ in solutions of different pH, with and without external Ca2+. Ba2+ was demonstrated to induce Ca(2+)-independent exocytotic release for an extended period of time (> 4 min) relative to release induced by K+ (approximately 30 s), which is Ca2+ dependent. In all cases, simultaneous changes of intracellular divalent cations, monitored by fura-2 fluorescence, accompanied quantal release and had a similar time course. Exocytosis caused by Ba2+ in Ca(2+)-free medium had a larger mean spike area at pH 8.2 than at pH 7.4. When Ba(2+)-induced spikes measured at pH 7.4 were compared, the spikes in Ca(2+)-free medium were found to be broader and shorter but had the same area. Release induced by K+ after exposure to Ba2+ was comprised of larger quantal events when compared with preceding K+ stimulations. Finally, spikes obtained with Ba2+ exposure at an extracellular pH of 5.5 had a different shape than those obtained in more basic solutions. These changes in spike size and shape are consistent with the interactions between catecholamines and other intravesicular components.
منابع مشابه
Brefeldin A increases the quantal size and alters the kinetics of catecholamine release from rat adrenal chromaffin cells.
The fungal metabolite, brefeldin A (BFA), is known to inhibit guanine nucleotide exchange on the ADP-ribosylating factors that are involved in vesicle membrane trafficking. Here, we investigated the action of BFA on Ca2+-regulated exocytosis in single rat adrenal chromaffin cells. Incubation of chromaffin cells with BFA (1 or 10 microM) for 2 h effectively disrupted the Golgi membranes but did ...
متن کاملTime course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells.
The time course of extrusion of the vesicular contents during exocytosis has been examined at adrenal medullary cells with carbon-fiber microelectrodes. Two electrochemical techniques were used: cyclic voltammetry and amperometry. Spikes obtained by amperometry had a faster time course than those measured by cyclic voltammetry, consistent with the different concentration profiles established by...
متن کاملZones of exocytotic release on bovine adrenal medullary cells in culture.
Secretion of catecholamines from individual bovine adrenal medullary cells in culture was examined by amperometry with 1-micron radius carbon-fiber electrodes. Vesicular secretion is observed as a series of current spikes upon exposure to a secretagogue. The small size of the electrodes was exploited to map exocytotic release sites on the surface of bovine adrenal medullary cells. These studies...
متن کاملHydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles.
The effects of the antihypertensive agent hydralazine (1 to 100 nmol/L) on the exocytotic process of single adrenal chromaffin cells have been studied using amperometry. Hydralazine does not reduce the frequency of exocytotic spikes but rapidly slows the rate of catecholamine release from individual exocytotic events by reducing the quantal size of catecholamine exocytosis. Confocal and standar...
متن کاملIs physiologic sympathoadrenal catecholamine release exocytotic in humans?
In cultured cells and isolated perfused organs, catecholamines are coreleased with chromogranin A (CgA) from adrenal chromaffin cells and sympathetic neurons. The corelease suggests that exocytosis is the mechanism of catecholamine secretion. To investigate whether physiologic catecholamine secretion is exocytotic in humans, we measured plasma norepinephrine, epinephrine, and CgA responses to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 63 5 شماره
صفحات -
تاریخ انتشار 1994